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Executive Summary 
   
Background. The remediation of sites contaminated with unexploded ordnance (UXO) 
remains an area of intense focus for the Department of Defense.  Current estimates place 
the total area of possibly UXO-contaminated sites at 10 million acres, with an overall 
cost of remediation with current methods and sensing technologies in the tens of billions 
of dollars.  Fortunately, studies have estimated that up to 80% of typical sites of potential 
contamination are actually UXO-free.  What is needed to take advantage of this ratio is a 
means to quickly and reliably scan large sites (on the order of 10,000 acres) in order to 
rapidly identify regions that are free of UXO and regions that must be subjected to more 
detailed and time-intensive examination and remediation with established UXO detection 
tools.  Recent investigations have focused on wide-area assessments (WAA) aimed at 
rapidly determining the approximate density and spatial distribution of UXO objects over 
regions of wide area, rather than identification of individual UXO objects.  Six wide-area 
assessment projects have been completed under the auspices of Strategic Environmental 
Research and Development Program (SERDP) and Environmental Security Technology 
Certification Program (ESTCP). [1]  These projects utilized various detection techniques 
with different strengths and weaknesses.  However, effective wide-area assessment has 
been hindered by a lack of accurate target and range information.  In addition, no single 
sensing technology has been both accurate and cost-effective in surveying entire sites.  
Therefore, this project will work closely with the ESTCP Wide-Area Assessment Pilot 
Program to examine intelligent data fusion to improve detection and identification.    
 
Objective. Intelligent data fusion techniques are being developed and optimized for use 
in enhancing wide-area assessment UXO remediation efforts.  A data fusion framework 
will be created to provide a cohesive data management and decision making utility that 
will capture all available data and more efficiently direct the expenditure of time, labor 
and resources.  In the first year of this project, the objectives are to determine the 
feasibility of feature selection methods for data fusion. 
 
Methods. In the context of UXO remediation, intelligent data fusion is the combination 
of unbiased pattern recognition techniques with expert information about the strengths 
and weaknesses associated with the data acquisition techniques and expert knowledge of 
the geology, foliage, and man-made features located at the site under scrutiny.  Data from 
multiple sensing modalities are utilized in an overall decision-making algorithm that is 
more accurate than any individual sensor on its own. [2,3] The data fusion algorithms are 
tailored to the data to extract the maximum information available from wide-area 
assessment sensing technologies.  Sensor data are further leveraged by correlation with 
historical target and expert site information in the data fusion algorithms.  In this manner, 
intelligent data fusion is able to augment the strengths of the different data types while 
minimizing their individual weaknesses to provide the most accurate wide-area 
assessment for the site given the available information. 
 
To date, effective wide-area assessment has been hindered by a lack of accurate target 
and range information.  In addition, no single sensing technology has been both accurate 
and cost-effective in surveying entire sites.  The data fusion framework under 
_______________
Manuscript approved March 5, 2007. 
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development in project MM-1510 is intended to bridge this performance gap and to do so 
in a manner that is as independent of the site data as possible, thus ensuring it is as widely 
applicable as possible.  Therefore algorithm development is designed to emphasize 
methods for feature extraction, data fusion, and decision making that are general in nature 
and not overly site dependent.  The data fusion framework will provide a set of 
algorithms and a process by which sensor data and auxiliary information can be 
combined to enhance ordnance-related signal and reduce false positives, independent of 
the specific sensor data and information available for any one site.  The initial studies 
described in this report are focused on feature extraction and pattern recognition 
techniques that will provide input to the data fusion algorithms. 
 
Results for Year One.  Multiple wide-area surveys with different sensing technologies 
have been acquired under the ESTCP Wide-Area Assessment Pilot Program.  The data 
resulting from wide-area surveys of the Pueblo Precision Bombing Range (PBR) #2 
along with associated expert information regarding the site were used for this study. The 
Naval Reseach Laboratory (NRL) reviewed all the available data obtained from the 
ESTCP WAA Pilot Program survey of Pueblo PBR #2.  This included magnetometry 
data acquired via helicopter survey (Helimag), LiDAR data in two resolution scales from 
airborne surveys, and orthophotography data from airborne surveys.  Efforts at importing 
and registering data of various formats into the MATLAB environment were successful.  
Utilities for the importation of arbitrary geo-referenced image data and text data in XYZ 
format were also constructed and tested.  In addition, a displacement of approximately 
four meters in geo-reference information was discovered in the orthophotography data 
acquired in 2004 relative to other survey data.  SERDP and Skysearch were notified and 
this discrepancy was addressed and successfully rectified. 
 
NRL obtained and reviewed auxiliary information for the Pueblo PBR #2.  This expert 
information was comprised of topological maps, geological survey data, and the archive 
search report for the site.  Historical usage indicated a training range with a bombing 
camp and nine precision bombing targets.  Anecdotal information in the archive search 
report also indicated the presence of a suspected 75 mm air-to-ground target and pattern 
gunnery range.  These data were utilized to generate a historical target feature map of 
likely UXO contamination.  Geological survey data indicated that the Pueblo site 
contained minimal magnetic geological features.  Foliage and other ground surface 
features that may interfere with data acquisition were also minimal at the site.  Such 
features are expected to significantly affect data acquisition and quality at other sites, and 
therefore will be incorporated into feature maps where relevant. 
 
NRL evaluated the current state-of-the-art in data analysis and data fusion algorithms for 
the sensing technologies employed in the ESTCP WAA Pilot Program surveys.  A 
literature review indicated that the current state-of-the-art was generally focused on 
algorithm development for the detection of specific objects, and was therefore more 
suitable for local area applications than for wide-area assessment.  Algorithms for 
orthophotography data emphasized classification of ground cover type through texture 
analyses or pattern recognition.  Though the Pueblo site lacked significant ground cover, 
these algorithms may be applied to orthographic data from other surveyed sites.  For 
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LiDAR, algorithms were specific to the applications, which were mostly environmental.  
However, the general approach used for algorithm development proved useful in feature 
analysis.  For magnetometry data, algorithms focused on physical modeling as a method 
of the detection of individual objects and required sensitivities not attainable in helimag 
surveys.  Approaches to data fusion typically applied multivariate analysis to time and/or 
frequency domain EMI data to distinguish individual objects as well.  EMI is a data 
source not yet available for wide-area assessment.  
 
NRL performed feature selection specific to each data source to optimize the extraction 
of information relevant for wide-area assessment.  As part of this effort, NRL also 
developed and implemented pattern recognition algorithms for all selected features in the 
sensor data obtained from the ESTCP WAA Pilot Program surveys.  Methods for feature 
maps suitable for auxiliary information were discussed above.  Craters were the principal 
UXO-related feature of the LiDAR and orthophotography data, and total magnetic 
content for the magnetometry data.  For the LiDAR and orthophotography data, the main 
components of the backgrounds to feature selection were geology, foliage, and man-made 
structures.  For the magnetometry data, geology and man-made structures contributed to 
the background while foliage was not a significant factor.   
 
Of the three survey data sets, the orthographic data were the least informative source for 
the Pueblo PBR #2.  Extraction of craters was not nearly as efficient as with the LiDAR 
data, and the minimal presence of foliage and man-made structures at this site made 
positive identification challenging.  Thus, autonomic pattern recognition yielded features 
with very low signal-to-noise ratios.  Crater extraction from the LiDAR data was 
successful.  An algorithm based on the circular Hough transform was able to extract a 
value of four meters as the characteristic diameter of craters at the Pueblo site.  Further, a 
pattern recognition algorithm based on the morphology of the craters was developed to 
locate them in the LiDAR data.  This information was then converted into a feature map 
describing the density aspect of craters.  Feature maps describing the intensity and quality 
aspects to craters may also provide data fusion algorithms with additional discriminatory 
information.     
 
Feature selection was most successful with the magnetometry data.  The total magnetic 
signal approach quickly yielded a feature map that displayed all relevant ferromagnetic 
signals from ordnance-related material and man-made structures present in the data from 
the surveyed area of the Pueblo PBR #2.  Due to the minimal geomagnetic features at the 
Pueblo site, a simple threshold proved effective in eliminating geologic background, 
which is expected to be more significant at other ESTCP WAA Pilot Program sites.  A 
pattern recognition algorithm was developed to separate ordnance-related signal from the 
ferromagnetic background of man-made structures.  This information was then converted 
to a feature map describing the density aspect of ordnance-related material.  Separate 
feature maps describing the intensity and morphology aspects of the ordnance-related and 
man-made components of data are also expected to provide additional discriminatory 
information for data fusion.      
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NRL developed a multi-resolution algorithm for converting feature maps to probability 
densities, which are required for the proposed Bayesian-based approach to data fusion.  
The multi-resolution algorithm used a computationally-intensive approach similar to that 
of Parzen windows. [5] The generation of probability densities is a key enabling 
component for data fusion work slated for year two. 
 
NRL also explored methods and algorithms for locating feature correlations among the 
various data sources.  Visual inspection of data from the three surveyed sources revealed 
apparent spatial collocation of crater and ferromagnetic features.  To quantify these 
correlations, principal components analysis (PCA) was applied to the data sets 
simultaneously.  The application of PCA resulted in no useful information as the features 
were too obstructed by background.  However, comparison of the crater and 
magnetometry feature maps for the southern portion of the Pueblo site to the combined 
feature map indicated that the features were not exactly spatially correlated.  The 
incidence of cratering was most dense in the region between the two peaks of ordnance-
related magnetic signal.  Therefore, algorithms to quantify feature correlations from data 
subsequent to feature extraction will be developed in the second year of the project. 
 
First year efforts for feature extraction were successful.  Features relevant for wide-area 
assessment of UXO contamination were successfully obtained from the various data 
sources.  Taken individually, the results for each data source (expert information, 
orthophotography, LiDAR, and magnetometry) did not provide an accurate wide-area 
assessment of the Pueblo site.  However, when the results were considered in tandem the 
extracted features provided a more accurate wide-area assessment of the Pueblo site.  For 
example, the crater-like feature density map filled in the gap between the two peaks in the 
southern portion of the magnetometer signal density map.  Thus, the target range known 
to be present in this area was used more extensively than indicated by historical sources.  
In addition, the density maps and the combined map all confirmed the presence of a 
second, but less used, target range located in the northern portion of the Pueblo site.  No 
evidence in these maps supports the existence of the suspected 75 mm range.  Ground 
truth dug in all three of these regions affirmed these conclusions.  
 
Conclusions:  The first year of project MM-1510 successfully demonstrated the 
feasibility of feature extraction from wide-area assessment survey data.  In contrast to the 
individual data sources, feature extraction yielded enhanced data for the Pueblo PBR #2 
that was well-suited for data fusion.  Preliminary combination of feature maps from the 
various data sources yielded a map for the Pueblo site that was more accurate than any 
one data source alone.  Probability densities were generated from the feature maps and 
make possible the combination of estimates of data quality, UXO-related features, non-
UXO backgrounds, and correlations among the data sets in a Bayesian-based approach to 
data fusion.    
 
The feature extraction algorithms and the tiered approach to data fusion developed in the 
first year will enable a data fusion framework for wide-area assessment to be an effective 
tool for UXO remediation of other sites.  Although tailored to the specific data sources, 
the algorithms developed are general in nature and not overly site dependent.  Large 
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variations in the backgrounds for extracted features are expected for different remediation 
sites.  However, these variations will most affect the signal-to-noise ratios in the maps of 
extracted features.  The strength of a data fusion approach is that it provides resilience to 
such variations by maximizing the information obtained from the different data sources 
and minimizing exposure to false positives and background variations. The methods will 
provide a means to develop additional feature maps to quantify specific background 
features.  Thus, the feature extraction algorithms and tiered approach to data fusion will 
be applicable to data sets from other survey sites.  In summary, the results from the first 
year of project MM-1510 have only strengthened the case for the effectiveness of a data 
fusion approach for wide-area assessment. 
 
Benefits. Key advantages of systems based on data fusion are the ability to reduce false 
positives while retaining high detection rates and the inherent flexibility of Bayesian 
decision trees.  Such a framework utilizes the information it has available, without 
necessarily requiring that the exact same inputs be present at each application.  This 
flexibility is an important feature of the data fusion approach as it is expected that, for a 
number of reasons, it will rarely be the case that exactly the same types of data will be 
available for analysis each time a wide-area UXO assessment is performed.  Previous 
work at NRL has demonstrated the success of such techniques in simultaneously 
improving detection and reducing false positives in shipboard damage control system 
architectures based around multiple sensor inputs.  It is expected that these benefits will 
be realized in UXO detection applications as well.  Additional benefits that will follow 
from this research are a better understanding of the relationships between different sensor 
technologies, the impact of these relationships on overall efficacy at UXO detection, and 
ultimately, the knowledge to help design more efficient UXO surveys in the future. 
 
Future Applications.   MATLAB was chosen as the computational platform for initial 
algorithms.  As a research tool, MATLAB provides an extensive code base, with the 
ability to port MATLAB implementations to other computational platforms following 
development.  It is expected that MATLAB will not be utilized as a production platform 
to implement the data fusion framework for use by site administrators.  Rather, a solution 
that involves partnering with an existing GIS software vendor would be preferable.  In 
the final year, we will meet vendors suggested by SERDP program managers to develop 
a detailed plan for transitioning the data fusion framework to a platform suitable for 
onsite implementations.  As part of this effort, we plan to demonstrate the capabilities of 
the data fusion framework at an appropriate site.  
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Objective 
 

The objective of project MM-1510 is to enhance assessment of buried unexploded 
ordnance (UXO) in large geographic areas through data fusion of outputs of multiple 
sensing technologies with any available expert knowledge of the sites.  The result of an 
intelligent combination of data feature analysis and site information will be wide-area 
maps of potentially contaminated sites delineating areas of likely UXO contamination 
from those that are free of UXO. Such maps show density of ordnance-related material, 
which is related to a likelihood of UXO contamination. These assessments will then 
direct the acquisition of data using more accurate, sensitive, and costly local-area UXO 
surveys.  Data from local-area surveys can then be fed back into the data fusion 
framework and used to further refine maps of these regions and to provide more detailed 
assessments. 
 
Project MM-1510 centers on the development and demonstration of a cohesive data 
management and decision making utility for enhancing UXO survey efforts.  This will be 
accomplished by providing an algorithmic means of utilizing complementary information 
from multiple sensing technologies corroborated with expert site information to reduce 
overall false alarm rates and thus enhance wide-area UXO assessment efforts.  A tiered 
approach to UXO assessment is being developed in which data from the wide-area 
sensing technologies are first processed by data fusion algorithms.  The resulting output 
is then used to help direct progressively more local and time intensive efforts where they 
are most needed.  The process as a whole is called the “data fusion framework” and will  
benefit site remediation by allowing more efficient direction of time, labor, and 
resources. 
 
This report describes the first year of a three-year effort to develop the data fusion 
framework.  The first year objectives were to determine the feasibility of feature 
extraction methods to provide complementary data from the various detection sources 
that will be used in intelligent data fusion. 
 
 

Background 
 

Problem Statement 
 
Current estimates place the total area of possibly UXO-contaminated sites at 10 million 
acres, with an overall cost of remediation with current methods and sensing technologies 
in the tens of billions of dollars.  Studies have estimated that up to 80% of typical sites of 
potential contamination are actually UXO-free, indicating a need to quickly and reliably 
scan large sites (on the order of 10,000 acres) in order to rapidly identify regions that are 
free of UXO and regions that must be subjected to more detailed and time-intensive 
examination and remediation with established UXO detection tools. 
 
Effective wide-area UXO assessment is centered on the capability to rapidly scan large 
tracts of land and obtain relevant, useful information in the process.  Two possible modes 
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of enhancement to wide-area UXO assessment are, first, decreasing the false alarm rate 
of current UXO sensing technologies, and second, utilizing alternate sensing technologies 
and survey methods that scan larger areas or more rapidly cover large areas than current 
sensing platforms. 
 
 
Current Technology 
 
Standard, ground-based UXO sensing technologies include methods such as vehicular-
mounted time and frequency domain electromagnetic induction (EMI), total field 
magnetometry (TFM), and ground penetrating radar (GPR).*  These UXO sensors have 
been deployed on ground-based platforms such as portable devices, push carts, and towed 
sensor arrays.  Standard analysis methods of these types of data are well described in the 
literature and have been implemented with success.  These methods typically rely on 
generating theoretical sensor response models, or measuring pure responses of various 
UXO items and then comparing survey data to these models in order to make a detection 
or classification.  Typically, the ability of such techniques to cover wide survey areas is 
limited, although current SERDP projects are assessing the utility of ground survey 
transects to increase this capability for wide-area applications. 
 
It is expected that any sensing technology suitable for WAA will have to be deployed 
from fixed wing aircraft, some other airborne platform such as helicopters, or even high-
altitude surveillance such as high-resolution satellite imagery in order to rapidly scan 
larger areas.  Such sensing will necessarily be remote relative to current methods for 
detection and classification of individual UXO objects, and that new sensing methods and 
data analysis technologies may be more applicable.  Thus, increasing the area scanned is 
likely to require both new sensing technology and new sensor deployment platforms. 
 
Demonstrated potential wide-area UXO sensing technologies fall into four broad groups:  
electromagnetic sensing, ground-penetrating radar and visible light imaging, thermal 
imaging, and hyperspectral imaging, all of which generate data in the form of maps (i.e. 
images, sometimes with additional depth information) that are spatially correlated with 
Global Positioning System (GPS) data or some other geo-referencing tool. [1] Of these, 
electromagnetic sensors are the most widely researched and deployed technology for the 
task of detection of buried UXO.  The Naval Research Laboratory's Airborne Multi-
Sensor Towed Array Detection System (AMTADS) is capable of scanning 500 acres per 
day, flying at a height of three meters.  However, at distances greater than three meters 
individual UXO objects rapidly become lost among the signals due to geological features; 
a consequence of signal strength on the cube-root of distance.  Nonetheless, application 
of magnetometry is proving to be useful for wide-area assessment. 
 
As the sensitivity/ ground penetration depth of direct UXO sensing technologies drops 
steeply with distance, alternate techniques for wide-area assessment will generally not 
have the benefit of sensing deeply buried UXO objects directly.  Instead, they must rely 
                                                 
* See “Proceedings of SPIE: Detection and Remediation Technologies for Mines and Minelike Targets V 
through VIII” and “Transactions on Geoscience and Remote Sensing, Vol 2, No. 3, (2001)” for examples. 
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instead on sensing UXO-related phenomena like spectral chemical signatures, variations 
in heat capacity, and measurements of surface clutter and micro-topological features.  
The techniques of synthetic aperture radar (SAR), light detection and ranging (LiDAR), 
and high-resolution aerial photography all yield information about micro-topological 
features and surface clutter of wide areas under assessment.  These sensors have the 
benefit of functioning over much greater distances than electromagnetic sensors, allowing 
them to be deployed on fixed wing aircraft.  With this group of sensors, the primary mode 
of detection relies on the location of micro-topological features associated with UXO, 
such as craters, infrastructure remnants, rather than the direct detection of individual 
UXO objects. Thermal imaging techniques yield information about variations in heat 
capacity across large areas and such images have been shown to be useful in location of 
UXO by sensing associated anomalies in heat capacity.  Finally, hyperspectral imaging 
techniques yield information regarding the chemical composition of wide areas of soil 
that can potentially be used to detect the presence and concentration of UXO.  Towards 
this end, six wide-area assessment projects have been completed under the auspices of 
SERDP and ESTCP. [1] These projects utilized techniques that varied from airborne 
infrared laser imaging combined with thermal imaging (UX-9523), synthetic aperture 
radar (UX-0126, UX-1070, and UX-1173), and airborne magnetometer arrays (UX-0031 
and UX-3002).   
 
Data Fusion Approach 
 
To date, effective wide-area assessment has been hindered by a lack of accurate target 
and range information.  In addition, no single sensing technology has been both accurate 
and cost-effective in surveying entire sites.  The data fusion framework under 
development in project MM-1510 is intended to bridge this performance gap and to do so 
in a manner that is as independent of the site data as possible, thus ensuring it is as widely 
applicable as possible.  The algorithm development is therefore designed to emphasize 
methods for feature extraction, data fusion, and decision-making that are general in 
nature.  The data fusion framework will provide a set of algorithms and a process by 
which sensor data and auxiliary information can be combined to enhance ordnance-
related signal and reduce false positives, independent of the specific sensor data and 
information available for any one site. 
 
As has been discussed, there are two primary modes by which wide-area UXO 
assessment capabilities can be enhanced.  First, the high false alarm rate of current UXO 
sensing technologies could be reduced, resulting in a reduction of time spent excavating 
non-UXO objects and allowing greater land coverage in a given period of time.  Second, 
alternate sensing technologies and survey schemes could be employed to increase data 
throughput/ land coverage in a given period of time.  The data fusion approach under 
investigation in project MM-1510 is directly aimed at both of these modes of 
enhancement. 
 
In the context of UXO remediation, intelligent data fusion is the combination of unbiased 
pattern recognition techniques with expert information about the strengths and 
weaknesses associated with the data acquisition techniques and expert knowledge of the 
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geology, foliage, and man-made features located at the site under scrutiny.  Data from 
multiple sensing modalities are utilized in an overall decision-making algorithm that is 
more accurate than any individual sensor on its own. [2,3] The data fusion algorithms are 
tailored to the data to extract the maximum information available from wide-area 
assessment sensing technologies.  Sensor data are further leveraged by correlation with 
historical target and expert site information in the data fusion algorithms.  In this manner, 
intelligent data fusion is able to augment the strengths of the different data types while 
minimizing their individual weaknesses to provide the most accurate wide-area 
assessment for the site given the available information.  
 
Figure 1 breaks down the proposed data fusion framework into five steps for wide-area 
assessment of an individual site.  The first step is the acquisition of all available sensor 
data and auxiliary site information.  A common, uniform grid for the site that 
encompasses all surveyed areas is generated from a preliminary examination of the data.  
Locations on the common grid serve as indexes for database storage of sensor and site 
information pertinent to that grid location.  The second step is the registration of sensor 
data and site information to the common grid and their incorporation into an easily 
accessible database format.  As part of the registration process, data are analyzed and data 
quality metrics are established, if possible.  Signals may be interpolated to fill gaps 
between data caused by geological impediments or from widely spaced “transects” in 
wide-area scans. 
 
The engine of the data fusion framework is in the third step, where data enhancement, 
data fusion, and algorithmic processing are performed.  Acquired sensor data are 
processed according to standard analysis algorithms as well as with additional feature 
selection algorithms specifically developed for each sensing technology.  Processed 
sensor data and relevant auxiliary information are then combined with Bayesian-based 
data fusion algorithms to uncover correlations and establish confidence levels for 
locations on the grid.  These algorithms are “smart” in that they incorporate into their 
calculations the strengths and weaknesses of the various sensor data and pieces of 
auxiliary information.  Finally, the data fusion results are analyzed via a Bayesian 
decision tree that examines grid locations across multiple size scales and then calculates 
preliminary UXO probabilities for the surveyed area.   
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Figure 1  Implementation of a data fusion framework for wide-area UXO assessment  

 
In the fourth step, the output of the decision tree is assimilated into a wide-area 
assessment map of the surveyed area.  Points on the map are scaled and color coded by 
likelihood to indicate the density of ordnance-related material.  In step five, regions of the 
wide-area assessment map delineating areas with a high probability of UXO 
contamination can be refined and enhanced with additional survey scans that acquire 
more detailed data.  Data from these more sensitive and higher resolution scans of 
contaminated areas can then be fed back into the data fusion framework, refining UXO 
probabilities towards an accurate local area assessment and dig sheet.  One advantage of 
the data fusion framework is that new data can be processed and incorporated into the 
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WAA map or the refined local area maps as it becomes available.  This sequence (steps 2 
– 5) is repeated until UXO contamination is acceptably mapped for the survey area.  
Remediation efforts are directed by a map-based display of UXO locations/classifications 
output by the Bayesian decision tree utilized by the data fusion framework. 
 
The data fusion framework is based on a tiered approach to data analysis, described in 
steps 1 – 3 above.  Each successive tier of analysis builds on the results obtained in lower 
tiers by examining the data in an expanding context of new features and auxiliary 
information.  The development of methods for each tier proceeds as follows: 
 
First, data are acquired and registered to a common, uniform grid using standard 
interpolation and averaging techniques where needed.  Data quality metrics are used to 
quantify any adjustments made to data and also serve as a numerical confidence measure 
for data at individual locations on the grid.  Historical target, relevant geological data, 
and other auxiliary information are also registered to the common grid.  Next, registered 
sensor data are processed with standard signal processing tools and subjected to 
exploratory feature selection algorithms to identify UXO-relevant features.  In parallel 
with this, the space of available dataset and feature combinations is examined to identify 
useful correlations across sensor platforms and prune redundant information.  
Computationally-tractable pattern recognition techniques for selected features are then 
developed and implemented.  The density, intensity, and morphology of features and 
correlations are quantified as probability densities for all locations on the grid.   
 
Next, a set of data fusion algorithms to combine feature maps and auxiliary information 
are developed by applying empirical and theoretically guided heuristics to choose 
appropriate decision and data combination rules.  The development of data fusion 
algorithms is guided and measured by their ability to enhance ordnance-related signal and 
reduce false positives in the context of available data and information.  Finally, a 
Bayesian decision tree is developed to examine and assess the results obtained from prior 
analyses on multiple size scales in a statistically rigorous manner.  The use of a Bayesian 
approach for the decision tree provides resilience to missing or corrupted data, and 
resilience to imperfect feature classifications and auxiliary information.  Note that the 
development process is by design not dependent on any specific type of sensor data or 
auxiliary information.  Data from new sensing technologies and site information can 
therefore be incorporated into the data fusion framework for a site as they are developed 
and analyzed.   
 
Development, implementation, and evaluation of project MM-1510 has been planned on 
a three-year schedule.  In the first year, the principle tasks are to extract features relevant 
for data fusion from the sensor data and to determine the feasibility of feature extraction 
to enhance ordnance-related signal and reduce false positives.  In the second year, data 
fusion algorithms and the Bayesian decision tree will be developed and evaluated.  In the 
third year, the data fusion framework will be optimized and demonstrated.  
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Methods 

 
The overall goal for the first year of project MM1510 was to demonstrate the feasibility 
of feature extraction from wide-area assessment survey data to enhance ordnance-related 
signal and to reduce false positives when used as input to data fusion.  Successful 
application of data fusion requires two characteristics for input data sets.  First, no single 
data source can cost-effectively provide the required information on its own, and second, 
the available data sources must be complementary, providing additional information not 
present in the other sources.  Without the first characteristic, there is no need for data 
fusion; without the second characteristic, there is no benefit from data fusion.  Thus, first 
year efforts were directed towards elucidating complementary features from the various 
detection methods, geologic data, and historical site information.  An assessment of 
extracted features will serve as the basis for a go/no go decision for continuing the project 
into the second year: data fusion framework development. The completed first year 
components of the data fusion framework are illustrated in Figure 2. 
 
 

 
Figure 2  Diagram of completed first year components of the data fusion framework. 

 
The first step was to obtain wide-area UXO survey data from the ESTCP Wide-Area 
Assessment Pilot Program.  Next, a review of sensor data and acquisition algorithms was 
performed in order to assess the feasibility of incorporating current data metrics into a 
potential data fusion framework.  Concurrently, available auxiliary information was 
reviewed for the selected site.  Features determined to be useful for UXO assessment 
were identified in the available data sets.  Finally, work was performed to develop custom 
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pattern recognition and feature extraction algorithms based on our sensor data and data 
algorithm review.  
 
Sensor Data Review  
 
The first step was the acquisition of data for feature selection and algorithm development. 
This work leveraged data that were acquired by SERDP/ESTCP programs, specifically, 
data acquired during the ESTCP Wide-Area Assessment Pilot Program.  The WAA Pilot 
Program examined three former Department of Defense sites in 2004 and 2005.  The 
three sites surveyed were: Pueblo Precision Bombing Range #2 in Colorado (CO), 
Former Kirtland Bombing Targets N1 and N3 in New Mexico (NM), and the Military 
Wash Area in the Borrego Maneuver Area in California (CA).  The principle sensing 
modalities utilized in each survey were low altitude (helicopter) airborne magnetometry 
often referred to as Helimag and high-altitude airborne LiDAR and orthophotography. 
 
The next step was the conversion and registration of data sources to a common grid and 
format.  MATLAB [4] was chosen as the computational platform for initial algorithm 
prototyping, and this choice dictated the data format.  MATLAB provides an extensive 
code base, and the ability to port MATLAB implementations to other computational 
platforms following development.  It is expected that MATLAB will not be utilized as a 
production platform for this work.  For production code, a solution that involves 
partnering with an existing GIS software vendor would be preferable for several reasons.   
 
Two grid spacings were selected for feature development, half meter and one meter.  It is 
possible to develop features in the native space of the data and then register the features 
to a common grid.  However, this approach was not taken as it does not allow for an 
examination of the impact of data resolution on feature extraction, which may be relevant 
to data acquisition costs. 
 
Expert Information Review 
 
As part of the Wide-Area Assessment Pilot Program discussed earlier, ground truth data 
were to be obtained for each site.  Information of this type is useful for assessing the 
utility of auxiliary data, the accuracy of feature extraction from sensor data, and, 
ultimately, for evaluating the probabilistic output the data fusion framework.  Thus, all 
available ground truth data were obtained for inclusion in feature development. 
 
Aside from ground truth data, auxiliary information regarding potential UXO 
contamination at a perspective UXO survey site was acquired to assess its potential to 
enhance data fusion.  Archive search reports for each site consisting of items such as 
historical records of site usage, data from previous surveys, first hand experience of local 
inhabitants, and other sources of expert knowledge were also obtained for review.  The 
inclusion of this additional information is expected to be useful in regions where 
geological features and surface phenomena inhibit or alter sensing technology results. 
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Evaluation of Current Sensor Algorithms  
 
A literature survey was performed in order to research current UXO data analysis 
strategies and to assess their utility for extracting features for data fusion.  Software 
packages commonly used in the evaluation of UXO data were obtained and evaluated for 
their ability to efficiently process large data streams, to locate features relevant for wide-
area assessment, and to export such information to the development platform.  Data 
provided in multiple, algorithmically-altered forms were evaluated to determine the 
impact of the alterations to subsequent feature analyses and data fusion. 
 
 
Feature Selection to Optimize Information and Pattern Recognition Implementation 
 
The feature selection and pattern recognition tasks are closely linked.  The investigations 
focused on locating features relevant to UXO assessment within the wide-area 
assessment data gathered, and also on determining what types of signal processing 
algorithms would be useful in extracting those features in an automatic fashion.  The 
extracted feature sets will ultimately form the inputs into any potential data fusion 
algorithm.  Utilizing expert information and ground truth regarding the survey site, 
regions of interest were located.  Data features exhibiting a causal or correlative link with 
UXO-related items were flagged and examined as well as features associated with the 
absence of UXO-related items.  The utility of various data analysis techniques was 
evaluated for potential in automatic extraction of these features, or otherwise marking 
regions associated with known UXO contamination. The acquired raw and processed 
sensor data were also examined to evaluate the ability of external signal processing 
techniques to remove redundancies and to identify previously unseen correlations and 
features in and between the data sets.   
 
The approach to feature analysis was based upon examining three aspects of identified 
features, their density, intensity, and morphology.  The density aspect of identified 
features quantified the number of features identified per unit survey area, irrespective of 
feature strength or shape.  The intensity aspect of features quantified their strength, and 
the morphology aspect quantified their shape.  These feature aspects were used to 
construct probability density maps that described the density, intensity, and morphology 
aspects of the features, or combinations thereof.  Such maps are well-suited to a Bayesian 
approach to data fusion.  Probability density was calculated via successive 
approximations of aspect density (i.e., probability mass) in local regions of decreasing 
size, as in the Parzen window approach.[5]  The goal was to find features whose 
probability density maps correlated (or anti-correlated) with UXO contamination as 
identified with auxiliary information and human review of the survey data.  For a variety 
of reasons, it was not expected that, on a feature by feature basis, all three of these 
aspects would necessarily prove to be simultaneously useful to achieving this goal. 
 
The final task of the first year of project MM1510 was to implement the feature selection 
techniques deemed to have utility in extracting UXO-relevant features from wide-area 
survey data.  The last criterion for feature utility was that its extraction from survey data 
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be performed with reasonable computational resources.  Development efforts focused on 
finding computationally-tractable methods of executing the feature extraction algorithms 
on very large data sets, and determining optimum parameters for algorithm usage. 
 
 

Results and Accomplishments 
 
 
Sensor Data review  
 
Part of the ESTCP Wide-Area Assessment Pilot Program was assigned for use in feature 
extraction development and in training data fusion algorithms. This subset included the 
data resulting from wide-area surveys of the Pueblo Precision Bombing Range #2 (CO) 
and half of the data from Former Kirtland Bombing Targets N1 and N3 (Kirtland AFB, 
NM).  The remaining half of the Kirtland site and all of the Military Wash Area in the 
Borrego Maneuver Area (Victorville, CA) site were reserved for blind testing of the 
resultant data fusion framework.  The studies described here used all the Pueblo site 
survey data files and associated information.   
 
The survey data obtained for the Pueblo site consisted of image files containing aerial 
LiDAR and orthophotographic surveys, and a series of text files containing data from a 
low-altitude (helicopter) survey.  The aerial LiDAR survey of the Pueblo site was 
received as two Environmental Systems Research Institute (ESRI) “*.adf” files (arc/info 
binary file format).  One file comprised a square region in the southwest corner of the 
survey region that had been acquired in 2004.  The other file comprised the remaining 
area of the survey and had been acquired in 2005.  Within these files, image pixel values 
were represented as 32-bit floating point numbers.  Images were recorded at 0.4m 
resolution in the first file and at 0.5m resolution in the second.  The aerial orthophoto 
survey of the Pueblo site was received as two Multi-Resolution Seamless Image Database 
(MrSID) “*.sid” files.  These surveys were acquired concurrently with the LiDAR survey 
and comprised the same areas of the survey region.  Each image was recorded at a 
resolution of 0.139m and each pixel’s value was represented by three 8-bit integers 
representing red, green, and blue intensities.  The magnetometry survey of the Pueblo site 
was received as a series of ten ASCII text files containing six columns of information 
representing Zone 13 UTM Northing and Easting coordinates, magnetometer reading, 
height above ground, height above ellipsoid, and time of acquisition. 
 
The first step in the review of the acquired data was to import the data into the MATLAB 
computational environment for viewing and further analyses.  A suite of MATLAB 
routines was assembled to provide a turn-key approach to importing the image and XYZ 
format data into the MATLAB workspace environment.  This accomplishment allows for 
convenient and rapid access to all survey data from within the MATLAB workspace, and 
makes possible the rapid importation of new survey site data in the future.  The critical 
functions that these routines perform are as follows:   
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1. Accepting user input of coordinates specifying a rectangular region within 
which the survey site lies that serves as a common geospatial grid of user 
specified resolution upon which multiple survey results and algorithm 
outputs are projected. 

2. Dividing the common grid region into user-specified square subsets, called 
“blocks,” to allow for analysis of local regions without requiring the 
retrieval of data from the entire survey site. 

3. Importation of geo-referenced imagery into the MATLAB computational 
environment, and utilizing interpolation or down sampling to register it to 
the common grid. 

4. Importation of so-called “XYZ” format data points such as those received 
from the helicopter magnetometry survey to the common grid. 

5. Wrapping all survey data and associated metadata (UTM coordinates, 
description of data layers, etc.) into a single data structure (i.e., database) 
for each subset block of the common grid. 

 
 
In order to import geo-referenced image data into MATLAB, the geospatial data 
abstraction library (GDAL) was obtained and installed along with the MATLAB 
“mexGDAL” toolbox [6], which provides an interface between the GDAL library[7 ]and 
MATLAB.  Due to the proprietary nature of the original image file formats, the image 
data files were first converted into geo-referenced images in “GeoTIFF” format and then 
imported into MATLAB. 
 
The conversion of magnetometer survey data into continuous surface estimates required 
the following steps.  For each subset block of the common grid, the magnetometer data 
text files were automatically searched for data points whose UTM coordinates fell within 
the geo-referenced boundaries of that subset block.  These points were read into 
MATLAB as double precision floating point numbers.  Next, the data points falling 
within a square around a location on the grid (i.e., pixel) were averaged.  The size of 
these grid pixels was specified by the resolution of the common grid.  Following 
averaging, the values of pixels for which no data points were located were estimated via 
interpolation based on the values of neighboring points.  Lastly, data quality metrics of 
data point density and variance for each pixel on the common grid surface were 
calculated for diagnostic purposes and for potential inclusion in future data fusion 
algorithms.  These data quality metrics are depicted in Figure 3(a) and (b). 
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Figure 3  Magnetometer signal data quality metrics: (a) data point density and (b) variance per image pixel. 

 
 
For the Pueblo Precision Bombing range area, the common grid was specified based on 
an examination of the furthest extents of each of the different survey data sets.  This grid 
spanned the range between UTM Northing 4,169,390 to 4,178,634 and UTM Easting 
614,590 to 618,627, (Zone 13) and represented a rectangular survey area of 
approximately 37 square kilometers.  This grid was then divided into regularly sized 
blocks that were 1024 meters to a side, starting at the SW corner and moving south to 
north and west to east.  For each block, the appropriate data were loaded from the source 
file and interpolated to fit a 1m or 0.5m resolution grid.  The data were saved on a block 
by block basis in a MATLAB database where each data layer occupied a different field in 
the structure.  Thus, correctly registered, survey-wide data were made available for 
subsequent feature extraction and processing.   
 
Note that the survey area of the Pueblo site represented roughly 40 million pixels of 
information at one meter resolution, or, roughly 4 gigabytes of information.  For 
comparison, the memory available in a typical modern desk-top computer is 1 gigabyte; 
in that of scientific workstation, 4 gigabytes.  As a consequence, an emphasis on 
maintaining computationally-tractable methods for data analysis was a necessity for 
algorithm development. 
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Expert Information Review  
 
The archive search report and available US geological survey information for the Pueblo 
PBR #2 site [8] were obtained and reviewed.  A detailed topological map showing man-
made and natural features within the Pueblo site was obtained for visualization and 
analysis purposes and registered to the common grid along with the WAA survey data. 
 
The former Pueblo Precision Bombing and Pattern Gunnery range #2 is in Otero County, 
Colorado and is characterized by flat to rolling hills covered with grass and low bushes.  
Figure 4 shows the portion of the Pueblo site that was surveyed with imagery.  Figure 5 
shows a photo of the terrain. [9] The range is approximately 20 miles south of La Junta, 
Colorado.  The area was used for cattle grazing until the War Department assumed 
control of the lands for a period spanning 1942 to 1945.  Currently, the lands are 
primarily managed by the U.S. Forest Service as the Comanche National Grasslands with 
some portions leased to private owners for grazing or else owned by the State of 
Colorado. [10] 
 
      

                                        
Figure 4  Pueblo Precision Bombing Range #2 wide-area survey site within Packer’s Gap 1:24,000 USGS 

topographical map (7 ½ Minute Quadrangle Sheet) 
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Figure 5  Vegetation typical of the Pueblo PBR #2 area. [9] 

 
Historical Usage and Suspected Targets.  The training range consisted of a bombing 
camp with two runways and nine precision bombing targets, a suspected 75 mm air-to-
ground target, along with an air-to-ground pattern gunnery range.  A map displaying 
these locations is shown in Figure 6.  This knowledge can be utilized to generate a feature 
map indicating high likelihood of UXO contamination at known target sites and some 
likelihood at suspected target sites. 
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Figure 6  Pueblo PBR #2 topographical map showing the survey area (yellow), man-made structure 

locations (blue dots), and known and suspected bombing target and gunning range areas (red). 

 
Geological Summary.  The presence of sedimentary rocks and the lack of iron-bearing 
and magnetic minerals [11,12] in the study site mean that minimal effect, if any, will 
occur with the magnetometer data.  The main geologic structures (domes, synclines) are 
far enough away from the area to also not affect the magnetometer data.  Any effects on 
the data will come mainly from any man-made features in the area (e.g., trucks or other 
equipment left by surveyors, electric lines, fences, and pipelines).   
 
Although the Pueblo site contains minimal magnetic geologic features, the following 
effects on magnetometer data have to be considered for future study sites:  (1) magnetic 
ore bodies either exposed as an outcrop or beneath the surface; (2) large geologic 
structures containing magnetic minerals (magmatic intrusions); (3) soils that contain 
significant amounts of magnetic iron-bearing minerals; (4) volcanic rocks containing 
significant magnetic minerals that produce magnetic anomalies; (5) structures that occur 
at tectonic plate boundaries (magnetics can be positive or negative) (6) fault zones, and 
(7) anticlines and synclines that effect the location and concentration of rocks containing 
magnetized minerals. 
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Physiography, Relief and Drainage.  Otero County lies within the physiographic 
province of the Great Plains.  The relief is gently undulating. The elevation ranges from 
3,965 feet in the northeast to 5,150 feet on a high mesa in the south-central part of the 
county for a total relief of almost 1,200 feet across the site.  Otero County is drained by 
the Arkansas River and its tributaries.  Major tributaries of the Arkansas river in Otero 
County are the Apishapa River, Timpas Creek, Crooked Arroyo, Anderson Arroyo and 
King Arroyo. [13] The vegetation is typical of the Great Plains.  The rolling surface 
contains bunch grass, sage, scattered cactus and yucca.  There are scattered low trees and 
bushes in several areas. [14] The information obtained indicates that the surface 
topography probed by LiDAR will be dominated in many portions of the site by washes, 
rolling hills, and bluffs.  A lack of large vegetation (e.g., trees) within the survey site 
indicates that a relatively high value can be placed upon the acquired LiDAR data, as the 
extensive application of a ground cover cancellation algorithm was not required. 
 
Ground Truth Data.  In the summer of 2006, SERDP and ESTCP personnel conducted 
a ground-truth survey of the Pueblo site in order to provide data with which to validate 
Wide-Area Assessment Pilot Program results.  These data were obtained by project 
MM1510 researchers and is depicted in Figure 7. 
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Figure 7  Pueblo PBR #2 topographical map with ground truth data.  Red dots indicate locations of 

ordnance-related, blue dots indicate non-UXO scrap, green dots indicate geologic feature (i.e., an empty dig 
site), and magenta dots indicate locations of intact ordnance. 

 
Evaluation of Current Sensor Algorithms 
 
For orthophotographic data, a wide variety of ground cover classification algorithms have 
been reported in remote sensing literature.[15-19]  These algorithms usually center on 
texture analysis and pattern recognition schemes for discerning ground cover type. 
Current literature reports of automated analyses of aerial imagery tend to focus on texture 
mapping, ground cover classification and detection of anomalies.  No applications 
specific to wide-area assessment of UXO were reported.  This result is not surprising as 
aerial photography is not capable of directly probing UXO objects, but must instead be 
used to locate visible features that have a high probability of co-occurrence with UXO.  
With this goal in mind, it is possible that ground cover classification could be useful in 
distinguishing foliage and geologic features from ordnance-related features. 
 
LiDAR survey data were provided by Sky Research both as “raw” surface altitude 
measurements of the surveyed region and as data processed with ground cover 
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cancellation algorithms that estimate the surface altitude measurements as “bare earth.”  
Both versions of the data were also provided as shaded relief visualizations.  While the 
shaded relief versions were advantageous for visual inspection of the data, they were not 
used for subsequent image analysis and feature extraction as the shading unnecessarily 
complicated automatic numerical analyses.  This difficulty with shading is due to the 
choice of lighting angle in the shaded relief map.  The lighting angle is essentially an 
arbitrarily chosen parameter and results in a variety of different potential images from the 
same surface estimate.  In contrast, the “bare earth” estimation algorithm employed by 
Sky Research was effective at enhancing UXO-related features as compared to 
background and was used in subsequent analyses. 
 
A literature review was performed to assess state-of-the-art sensor data algorithms for 
detection of buried unexploded ordnance with aerial LiDAR sensing.   The review 
revealed that such applications of LiDAR topographical analysis are relatively new and 
under-reported in the scientific literature.  Applications detailing various ground surface 
estimation methods were predominant in the current literature, with the subsequent 
topographical analyses often performed in a more or less manual fashion.  Topographical 
applications were generally divided between environmental monitoring [20-26] and 
topographic mapping of urban areas. [27-31]  Environmental monitoring included tasks 
such as quantitative assessment of beach and wetland erosion, [20,21] assessment of 
forest and rangeland ground cover, [22-24] and accurate topographical mapping of 
remote areas, such as underwater coral reefs [25] or texture analysis of polar sea ice. [26]  
Urban mapping applications included tasks such as building, [27] bridge, [28] and power 
line recognition [29] and three-dimensional modeling of man-made structures. [30,31] 
 
Typically, the analysis procedures and/or algorithms utilized in each application were 
highly specific to the goals of that application, and consequently not directly applicable to 
wide-area UXO assessment.  In some cases, the use of specific families of mathematical 
transforms, such as wavelet decomposition [32-34] and fractal dimension analysis [35] 
have been reported as part of preliminary work to determine their effectiveness at feature 
extraction.  In these cases, the features examined and thus, the utility of the approaches, 
were also specific to the given applications.  What does become apparent in a review of 
current literature, however, is that the general approach to topographical analysis of 
LiDAR data follows the same general steps in each case, regardless of application:  First, 
a set of objects of interest was defined for the task at hand.  Next, the manner in which 
these objects uniquely present themselves as perturbations in the raw LiDAR data cloud, 
or in the LiDAR-generated surface was discerned.  This knowledge was then used to 
create a feature extraction algorithm that located regions of the LiDAR survey that were 
associated with the objects of interest.  Although there appeared to be no “turn key” 
approaches to extracting UXO-related features from LiDAR  survey data, an approach 
that followed the steps above while minding the context of other applications should 
provide the best chance for success. 
 
The literature on helicopter and ground magnetometry focused largely on individual 
object detection.  Such techniques are not necessarily well-suited to the task of wide-area 
assessment.  Typical electromagnetic induction and total field magnetometry data 
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analysis algorithms utilize physics-based modeling to predict target size, orientation, and 
depth. [36-40] A number of pattern recognition and statistical techniques, [37,38,41-43] 
data fusion approaches, [44,45] and factor analysis algorithms[46,47] have been 
investigated to discriminate between UXO and non-UXO signatures.  Most applications 
of multivariate analysis involved time and/or frequency domain EMI data, rather than 
TFM such as that acquired in the ESTCP WAA Pilot Program.  Several tools that have 
been developed to assist in the analysis of magnetometry data are incorporated into a 
module for Oasis Montaj from GeoSoft, Inc.  [48] 
 
The utilization of physics-based modeling tools is often problematic when confronted 
with a high density of metallic objects, metallic clutter and magnetic geological features.  
[49] Therefore, much of this current research focuses on the development of algorithms 
and filters to deconvolve multiple signals.  While the output of these algorithms may 
prove useful, their goals are not entirely consistent with wide-area assessment where the 
determination of areas of likely contamination takes precedence over identifying 
individual items of UXO.  For instance, the identification of ordnance size and 
orientation is less important than simply determining whether the signal is or is not the 
result of UXO-related scrap.  Thus, the application of these algorithms holds value in so 
much as it may provide information that assists in discriminating UXO from non-UXO 
signatures.  Unfortunately, due to the immense size of potential wide-area survey sites, 
the computational complexity of analysis algorithms becomes a concern and the problem 
must be approached from this mindset, rather than from that of a limited, local area 
assessment.  For this reason, the approach taken in this work focused on a morphological 
analysis of the observed signal in TFM survey data. 
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Feature Selection to Optimize Information and Pattern Recognition Implementation 
 
Orthophoto Data Analysis.  An examination of the orthophotographic data available for 
the former Pueblo PBR #2 was performed to ascertain the potential for automated feature 
extraction of UXO-related phenomena. 
 
The main features depicted by the orthophotographic survey of the site were different 
types of ground cover, evidenced by color and shape morphology.  Subjects such as dirt 
roads, trees, and brush were plainly visible.  An orthophoto image at one-meter resolution 
of a sub region of the survey site is depicted in Figure 8. 
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Figure 8 Orthophoto of a sub region of the Pueblo PBR #2. 

 
Unfortunately, none of these features seemed to bear any useful association with UXO 
objects.  In areas with heavy cratering, it was observed that vegetation was present within 
the craters, although vegetation was also observed in areas without cratering, negating 
this feature’s usefulness for UXO indication.  While the location of man-made structures 
such as fences and buildings was useful in assisting in the interpretation of magnetometry 
data, an automatic means of doing so was frustrated by the highly variable background 
present in the orthophotography images.  Searching for regular geometric shapes (circular 
targets, fenced areas, buildings and structures) was difficult, as edges were generally very 
poorly defined. This was due in part to the relatively low contrast of the image as well as 
to the variability of the background.  Additionally, an examination of the relationship 
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between color intensities on a pixel-by-pixel basis indicated a high degree of correlation, 
shown in Figure 9.  This indicated that the orthophoto images contained very little 
information in terms of color. 
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Figure 9  Depiction of the relationship between the three color channels of the orthophoto image shown in 

Figure 8 on a pixel-by-pixel basis. 

 
 A black and white version of the image in Figure 8 is shown in Figure 10.  This image 
was generated by converting the 8-bit RGB image to an 8-bit grayscale image and then 
applying an intensity threshold of 130 units.  The map depicts areas within the image that 
are lighter than their surroundings, but does not provide a path to locating features of 
interest for wide-area UXO assessment. 
 



 27

UTM Easting

U
TM

 N
or

th
in

g

UTM Easting

U
TM

 N
or

th
in

g

 
Figure 10  Black and white thresholded version the orthophoto image in Figure 8. 

 
In an attempt to mitigate the effects of correlation between the three color channels of the 
orthophoto image, PCA [50] was used to transform the original RGB space into 
potentially more relevant descriptors.  The first principal component of the image shown 
in Figure 8 is shown in Figure 11.  As can be seen, the image is segmented into lighter 
regions (roads, bare earth) that are shaded blue in the false-color image in Figure 11, 
medium regions (grasses), shaded green and yellow, and darker regions (dense 
vegetation, water), shaded red.  As was expected, subsequent principal components 
provided negligible information due to the high-degree of correlation between the color 
channels of the original image.   
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Figure 11  Image segmentation of the region depicted in Figure 8 via principal components analysis. 

 
Unfortunately, information obtained from ground cover classification methods provided 
no clear path to improving UXO assessment in any automatic fashion.   Thus, the 
potential utility of this data set in wide area UXO assessment of the Pueblo PBR #2 is 
currently limited to assisting in visual assessment of the survey area.  For example, an 
overlay of site imagery would assist in compiling expert information into maps for 
inclusion into a data fusion framework.  Potential applications remain in utilizing image 
analysis techniques to identify features through classification of vegetation and ground 
cover, but only if such features are found to be correlated with ordnance-related objects, 
or, alternatively, correlated with prominent features in other survey data in such a way as 
they assist in the interpretation of that data. 
 
 
LiDAR Data Analysis.  The principal feature in LiDAR data associated with UXO is 
cratering of the ground surface.  While unexploded ordnance itself does not cause crater 
formation, craters indicate a land usage pattern of active ordnance bombardment, and 
through the assumption of collocation, a commensurate increase in the likelihood that 
UXO is present.  The two main criteria for a successful automatic crater detection 
algorithm are that it be reasonably fast and highly selective for ordnance-related craters. 
 
It is important to note that the depth of the ordnance-related craters observed is small 
relative to the overall changes in elevation experienced within the survey area, as shown 
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in the shaded relief map in Figure 12 and in the top-down view shown in Figure 13(a).  
This means that the detection of craters must occur through the location of crater-specific 
arrangements of pixel values within the LiDAR image rather than directly through pixel 
values themselves.  A popular algorithm used in machine vision for locating objects of 
radial symmetry is the circular Hough transform. [60]  The output of the transform is a 
map of the same dimensions of the input image, with each pixel in the map indicating the 
output of an “accumulator” that sums the input data (or an appropriate transformation 
thereof, such as the output of a Sobel gradient edge detecting algorithm) occupying a 
constrained circular geometry about the pixel.  Map pixels with a high accumulator value 
indicate areas at the center of a circular feature, and an appropriate threshold is applied to 
label these features. 
 

Figure 12  Subsection of LiDAR generated surface estimate for the Pueblo site showing ordnance-related 
cratering.  Typical crater depths are smaller than variations in surface elevation. 

 
Adapting this technique for crater detection, the initial LiDAR surface data needed to be 
transformed in order to give high signal value to crater slopes and low value to relatively 
flat areas.  This was accomplished by estimating the gradient (i.e. the slope of the 
surface) at each pixel in the LiDAR image.  Next, a moving window filter was applied 
across the gradient estimate image, accumulating signal at a fixed radius range from each 
pixel.  This was implemented with functions from MATLAB’s Image Processing 
Toolbox.  An equivalent, but faster executing, implementation was available on 
MATLAB’s Central File Exchange. [52]  The alternate implementation used an estimate 
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of the gradient direction as well, adding to the accumulator of the pixel one radius unit 
away in the direction of the gradient.  The approach is essentially the same as that used 
by Loy and Zelinsky.[53]  In either case, the range of feature radii over which to search 
was specified.  In initial testing, the two circular Hough transform implementations 
examined provided essentially equivalent output. 
 
In order to assess the circular Hough transform’s ability to detect craters within the 
LiDAR data, it was first applied to the subset of data depicted in Figure 12.  Figure 13(a) 
shows a top-down view of the shaded relief map shown in Figure 12.  This view is useful 
for visualization purposes, but not for automated feature extraction.  Figure 13(b) depicts 
a false-color map of the raw LiDAR surface data of the same region.  This map indicates 
that the dominant feature in this region is a hillside sloping downward from the northwest 
corner of the image to the southeast corner.  The craters located within this region are 
difficult to see, as they represent a small change in elevation relative to the terrain present 
at this location.  A surface gradient estimate was calculated for every pixel in this image, 
which is shown in Figure 13(c). Here, the crater walls are clearly visible against the 
relatively small slope of the surrounding area.  Finally, Figure 13(d) depicts the output of 
a circular Hough transform applied to this data.  Crater locations are clearly visible and 
are selectively detected against other surface features, such as small hills and roadways.  
Further, the output of the circular Hough transform indicated that ordnance-related craters 
in this region were relatively uniform and were typically four meters across.   
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Figure 13  The process of applying a circular Hough transform to locate craters in LiDAR data.  Figure 
13(a) is a shaded relief map of a subsection of LiDAR data with ordnance-related cratering.  Figure 13(b) 

depicts a false-color map of the raw LiDAR surface data, indicating that the dominant feature of this data is 
a hillside sloping downward from the northwest corner of the image to the southeast corner.  In Figure 
13(c) the MATLAB-generated surface gradient estimate is shown.  Figure 13(d) depicts the output of a 

circular Hough transform applied to this data. 

 
Following successful detection of craters in a heavily cratered region, the algorithm was 
next applied to the entire Pueblo site.  The circular Hough transform output for the entire 
survey area is shown in Figure 14.  As with the sub regions, craters are accurately located 
by the transform.  Unfortunately, the crater detection algorithm also proved to be less 
selective than anticipated.  As can be seen in Figure 14, large accumulator values were 
registered for various non-ordnance related geographic features such as gullies and bluffs, 
in the upper central portion of the region and elsewhere.  This lack of selectivity was 
likely to hamper the utility of the circular Hough transform output for input into a data 
fusion based wide-area assessment framework. 
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Figure 14  Survey-wide map of circular Hough transform output.  The circular Hough transform 
demonstrates a significant response to non-ordnance related features in the upper region of the survey. 

 
In response to this challenge, a more restrictive algorithm was implemented within 
MATLAB.  First, the gradient and gradient direction for each pixel in the raw LiDAR 
surface were estimated, shown in Figure 15(a) and (b).   This step was carried out in a 
similar manner to that utilized by Bai, Shen and Wang in their radial symmetry feature 
finding algorithm. [54]  Pixels with gradient magnitudes less than 0.1 units were removed 
from consideration, resulting in the map shown in pane (c) of Figure 15.  One 
consequence of this approach is that shallower, less steeply sloped craters will be more 
difficult to detect.  The ability to detect shallower craters will depend on the surface 
texture of the survey site and the uncertainty in the LiDAR estimated surface.  By 
specifying a particular crater radius range and surface gradient threshold, the crater 
detection algorithm can be utilized to selectively search for specific crater sizes.  Expert 
information regarding soil density and depth as well as historical information regarding 
which types of ordnance were used at the site could conceivably be used to fine tune 
these parameters.   
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Figure 15  Estimated LiDAR surface gradient (a) and direction (b) before and after (c) gradient magnitude 
threshold application.  (d) A direction of 0 radians indicates a positive surface gradient estimate orientation 

of due east.  
 
Next, a windowed filter was applied across the gradient direction image that calculated 
the difference between the region local to the center pixel of the filter and an “ideal 
crater” gradient direction template.  The crater template, shown in Figure 16, was 
generated by assuming a circular crater of radius four meters and calculating the direction 
of the surface gradient at each pixel in the hypothetical crater.  Pixels that were in the 
center of the crater and beyond the rim were disregarded in this difference calculation.  
Pixels with gradients that were within 10 degrees of their counterpart in the crater 
template were located, with each one counting as one vote.  The filter generated the 
number of votes each potential crater location garnered, normalized by the total number 
of potential votes.  Figure 17 depicts the difference in direction between the crater 
template and (a), a non-crater region, and (b), a crater-containing region. 
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Figure 16  Surface gradient direction template for a crater of four meter radius in a one meter resolution 
image. 

 

Figure 17  Residual between data and ideal crater template for (a) a non-crater containing region, and (b) a 
crater containing region. 

 
Pixels with a value of less than 0.30 (only thirty percent of surrounding pixels point 
inward to center) were discarded and the remaining pixels were flagged as crater center 
locations.  This method greatly enhanced rejection of geographic features within the 
survey area when compared to the circular Hough algorithms examined first, as 
demonstrated by the survey-wide algorithm output shown in Figure 18(a). 
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Figure 18  A survey-wide map of the crater-detection algorithm output is shown in (a) with crater centers 
dilated to enhance visibility.  Shown in (b) is a map of estimated probability density for the crater 

distribution in (a). 

The final step in the crater detection algorithm was to estimate the probability density of 
the crater feature found throughout the Pueblo survey area, shown in Figure 18(b).  The 
information provided by the custom crater detection algorithm is now suitable for input 
into high-level data fusion algorithms.  Additional data quality metrics such as crater 
depth and edge slope statistics can also be easily calculated for data fusion purposes.  
These metrics may become important in situations where distinguishing between 
different types of ordnance usage and/or ordnance and non-ordnance sources of cratering 
are desired. 
 
 
Magnetometry Data Analysis. The phenomena measured via airborne magnetometry 
sensing are deviations in the background magnetic field of the earth due to the presence 
of ferromagnetic materials on or below the surface of the ground.  Ferrous materials that 
may be present at a survey site include not only UXO and ordnance-related scrap but also 
a background of non-UXO related signal comprised of man-made features such as 
buildings, fences, pipelines, general metallic detritus, and magnetically active geological 
features.  Thus, the main criterion for a successful detection algorithm for wide-area 
assessment of ordnance-related material is the accurate separation and extraction of 
UXO-related signal from background with computationally-reasonable methods.   
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Typically, analysis of magnetometer readings involves fitting a physics-based model to 
predict quantities such as object depth, size, and orientation.  This approach can be 
complicated by highly overlapped signals from multiple objects and from excessive 
distance between the object and the sensor.  For the purposes of wide-area assessment, it 
was decided that, rather than approaching the UXO recognition from a physics-based 
modeling approach, it would be advantageous to consider the problem from an image 
analysis standpoint, examining the morphological characteristics of total magnetic signal 
distributions throughout a given survey site.  This approach has the potential to loosen 
requirements on magnetometer data gathering and to speed analysis times while 
continuing to provide useful assessments of potential UXO contamination for input to a 
data fusion framework.   
 
During registration to the site map grid, the magnetometer signal readings were converted 
to absolute value to provide a total magnetometer signal at each pixel.  These magnetic 
data are shown in Figure 19 for the Pueblo site.  This total magnetic signal was then 
examined to look for features that would separate ordnance-related signal from the 
ferromagnetic background. 
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Figure 19  Estimated total coverage magnetometry survey constructed from airborne magnetometry data 

acquired over the Pueblo site.  Depicted are (a) absolute magnetometer reading, and (b) absolute 
magnetometer reading with a threshold of 10 nT applied to exclude signal due to magnetic geology. 
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The principle algorithmic challenge to feature detection within the magnetometry data is 
the similarity of the ordnance-related signal to the non-ordnance background, both in 
terms of feature intensity and spatial location.  Figure 20 displays magnetometry data 
from the southern portion of the Pueblo site, illustrating the similarities between 
ordnance-related signal associated with a ship target berm (outlined in red) and non-UXO 
related ferromagnetic objects such as fence lines and other surface structures.  Figure 21 
shows a zoomed view of these items.  Figure 22 displays the magnetometry data related 
to these features at even finer detail, exposing their similarities.  As can be seen in these 
figures, a scatter cloud of semi-circular clusters of pixels corresponding to ordnance-
related signal is located near the ship target berm.  The morphology of the cloud exhibits 
circular symmetry over several size scales, but is incongruous with the linear morphology 
of the fence with which the cloud overlaps.  Therefore, an initial examination of the 
magnetic data was performed with a wavelet-based approach [55,56], which is typically  
well-suited to distinguishing shape and scale dependent features.  
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Figure 20  Subsection of the airborne magnetometry survey containing a ship target (indicated in red), 

ordnance-related scrap, and man-made structures. 
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Figure 21  Enlarged regions of Figure 20 containing a ship target (indicated in red), ordnance-related scrap, 

and a man-made structures. 
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Figure 22  Further enlarged region of Figure 20 showing the data similarity of the scatter cloud and fence 

features. 

 
Wavelet Analysis.  The first step was to explore “denoising” of the wavelet 
decomposition of the magnetometry data.  Denoising is an umbrella term in the signal 
processing community that refers to methods which remove portions of the signal, 
typically unwanted noise, but which can also be structured background features.  Noise is 
generally captured by small-valued wavelets in finely detailed scales.  Its removal was 
expected to enhance the semi-circular clusters of ordnance-related signal in the data.  
Large scale morphological features such as the scatter cloud and the fence line are 
generally captured by large valued wavelets at all size scales and were expected to be 
enhanced after the removal of the least significantly valued wavelets.  The impact of 
removing small valued wavelets from the finely and coarsely detailed scales in the 
wavelet decomposition of the magnetometry data was examined after applying a standard 
wavelet denoising algorithm. [57,58]  Even though several wavelet families and widely 
varying noise thresholds were applied, denoising of the magnetometry data did not 
enhance ordnance-related signal beyond that achievable by simply thresholding the 
magnetometry data at an intensity of ten units (i.e., keeping data with values greater than 
or equal to 10 nT).  The threshold-applied magnetometry data are shown in Figure 19(b).  
Close comparison with Figure 19(a) shows that thresholding was effective in eliminating 
small valued and unstructured ferromagnetic background distributed fairly uniformly in 
the magnetometry data across the Pueblo site. 
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Though denoising was not effective at enhancing magnetometry features, it did reveal 
that the magnetometry data were of good quality in the sense that was relatively noise-
free.  Pixel intensities greater in magnitude than approximately one unit appeared to 
consistently correspond to ferromagnetic objects on or below the surface of the ground, 
rather than to sources of false positives specific to the magnetometry sensor system.  By 
association, features in the magnetometry data should also be of similar good quality. 
 
The next step in analyzing the wavelet decomposition of the magnetometry data was to 
look for morphological parameters that might characterize and distinguish the ordnance-
related signal from the ferromagnetic background.  Because the wavelet decomposition is 
multi-scale in nature, it is able to separate features by size.  Therefore, the decomposition 
of the magnetometry data was examined to look for morphological features at size scales 
that might correspond to ordnance-related signal or ferromagnetic background, for 
example, a characteristic diameter for the semi-circular pixel clusters  
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Figure 23  Example survey regions (a) with ordnance-related signal and (b) free of ordnance-related signal.  

For each region the corresponding standard deviation, mean, median values of wavelet coefficients per 
scale (0 = coarsest) are depicted. 

 
Figure 23 shows a comparison of two small sections of the magnetometry data.  The 
upper left pane (Figure 23(a)) shows a region replete with ordnance-related signal; the 
upper right pane (Figure 23(b)) shows a region nearly free of signal and ferromagnetic 
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background.  The lower portion of Figures 23(a) and (b) shows plots the mean, median, 
and standard deviations of the wavelet decomposition per scale for the magnetometry 
data (a) and (b), respectively.  Although each wavelet statistic curve exhibits a peak for 
the ordnance-related data, the peaks are rather broad and are not consistent with a single 
scale.  Further, the overall profiles of the wavelet curves for the ordnance-related data are 
very similar to those of the background image, differing significantly only in magnitude.  
Thus, the wavelet decomposition analysis concluded that the semi-circular clusters of 
pixels representing ordnance-related signal in the magnetometry data typically comprised 
several size scales simultaneously and were so sparsely distributed that a better separator 
of signal from background was simply the pixel magnitude.  This is also consistent with 
the earlier denoising results, that is, the lack of enhancement to magnetometry features. 
 
Pixel Clustering Analysis.  The next step in the analysis of magnetometry data focused 
on extracting features relevant for ordnance-related signal in the context of density, 
intensity, and morphology aspects to the data.  Based on the results from the wavelet 
decomposition analysis, the magnetometry data were thresholded to ten units for this 
effort to remove spurious and small-valued background.  An algorithm was developed to 
identify clusters of adjacent and above-threshold pixels and group them into “pixel 
islands.”  Adjacency was defined as the pixels eight nearest neighbors.  An island was 
defined as any cluster of two or more adjacent and above-threshold pixels.  Pixels 
meeting these criteria are shown in Figure 24(a) for the Pueblo site.  Figure 24(b) 
displays a preliminary probability density obtained from the density of pixel islands in 
pane (a).  A zoomed view displaying the pixel island components to the ordnance-related 
cloud and fence features from Figure 22 are shown in Figure 25(a).  The binary version 
used to generate a probability density distribution is shown in Figure 25(b).  Pixel islands 
are able to capture ordnance-related features in the magnetometry data, but significant 
ferromagnetic background from man-made structures is equally well-captured. 
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Figure 24  Shown in (a) are pixel islands in the magnetometry data.  Figure 24(b) is a map of estimated 

probability density generated from (a). 
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Figure 25  Shown in (a) are pixel island components to features shown in Figure 22.  Figure 25(b) depicts a 

binary version of (a). 
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In order to distinguish ordnance-related features from structured ferromagnetic 
background, the morphology of the pixel islands was explored.  Filtering pixel islands 
based on the number of pixels each island contained was effective in separating signal 
from background features.  For example, Figure 26(a) displays all pixel islands in the 
southern portion of the Pueblo site shown previously in Figure 20.  Figure 26(b) displays 
only those pixel islands with two to 75 member pixels.  Note that only a few islands from 
the man-made structures remain.  Panes (c) and (d) display pixel islands with 75 – 200 
and 200 – 1000 member pixels, respectively.  In these ranges, nearly all pixel islands 
belong to man-made structures.  Only a few islands in the densest regions of the 
ordnance-related scatter cloud are present in these ranges.  Figure 27(a) displays pixel 
islands with less than 100 member pixels for the Pueblo site.  Figure 27(b) shows the 
corresponding preliminary probability density for this pixel island feature range.  The 
scatter clouds of ordnance-related signal associated with targets in the northern and 
southern sections are clearly the dominant features.  For comparison, results for pixel 
islands with more than 100 member pixels are displayed Figure 28.  Although the densest 
regions of the scatter clouds are visible, the features in Figure 28 are almost entirely due 
to man-made structures, with the fence line crossing the southern section clearly visible.   
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Figure 26  Filtering of pixel islands: (a) all pixel islands, (b) islands with 2 – 75, (c) 75 – 200, and (d) 200 

– 1000 member pixels. 
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Figure 27  Shown in (a) are pixel islands containing less than 100 member pixels. Shown in (b) is a map of 

estimated probability density generated from (a). 
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Figure 28  Shown in (a) are pixel islands containing more than 100 member pixels.  Shown in (b) is a map 

of estimated probability density generated from (a). 

 
The pixel island features contain additional information about the magnetometry data 
making possible further separation of ordnance-related signal from structured 
ferromagnetic background.  First, the intensities of member pixels seemed to be larger for 
man-made structures than for ordnance.  This could have been due to the location of 
structures on the ground surface, appreciably closer to helicopter than buried ordnance, as 
well as to more concentrated ferromagnetic content, typical of fence posts and pipelines.  
Figure 29 shows average pixel intensities for each pixel island in a sub region near the 
target in the southern region of the Pueblo site.  Intensities in the fence feature were much 
higher than those in the dense cloud of UXO-related scrap around the bombing target.  
This approach may provide a probabilistic estimate to determine if features in the 
magnetometry data are on or below the surface of the ground. 
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Figure 29  Average pixel island intensities, capped at 55 nT, for island pixels surrounding the target in the 

southern portion of the Pueblo site. Surface clutter objects such as fence lines have significantly greater 
intensity per pixel. 

Figures 30 and 31 depict the distribution of pixel islands in the airborne 
magnetometer data with average signal intensities below and above a threshold of 
50 nT, respectively.  As with filtering based on pixel island size, good 
discrimination was observed between signal associated with buried UXO-related 
scrap and that associated with metallic objects on the surface. 
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Figure 30  Shown in (a) are magnetometer signal pixel islands with average intensity less than 50 nT.  

Shown in (b) is a map of estimated probability density generated from the pixel islands in (a). 
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Figure 31  Shown in (a) are magnetometer signal pixel islands with average intensity more than 50 nT.  

Shown in (b) is a map of estimated probability density generated from the pixel islands in (a). 

 
Second, the shapes of pixel islands associated with man-made structures such as fence 
lines were generally more elliptical than those in the ordnance-related scatter cloud.  
Figure 32, reproduced here from Figure 25(b), shows a binary image of the pixel islands 
shown in Figure 22.  Islands associated with the fence tend to have a major axis that is 
much larger than their minor axis.  It may be possible to build a filter based on this 
characteristic to help separate ordnance-related signal from ferromagnetic background.  
Taken as a whole, the magnetometry analysis resulted in three layers of extracted features 
that are expected to prove useful as inputs to the data fusion algorithms to be developed 
in year two of the project. 
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Figure 32  Binary version of Figure 22. 

 
 
Summary of Results from Year One Tasks 
 
NRL reviewed all the available data obtained from the ESTCP WAA Pilot Program 
survey of Pueblo PBR #2.  This included magnetometry data acquired via helicopter 
survey, LiDAR data in two resolution scales from airborne surveys, and 
orthophotography data from airborne surveys. Efforts at importing and registering data of 
various formats into the MATLAB environment were successful.  Utilities for the 
importation of arbitrary geo-referenced image data and text data in XYZ format were also 
constructed and tested.  In addition, a displacement of approximately four meters in geo-
reference information was discovered in the orthophotography data acquired in 2004 
relative to other survey data.  SERDP and Skysearch were notified and this discrepancy 
was addressed and successfully rectified. 
 
NRL obtained and reviewed auxiliary information for the Pueblo PBR #2.  This expert 
information was comprised of topological maps, geological survey data, and the archive 
search report.  Historical usage indicated a training range with a bombing camp and nine 
precision bombing targets.  Anecdotal information in the archive search report also 
indicated the presence of a suspected 75 mm air-to-ground target and pattern gunnery 
range.  These data were utilized to generate a historical target feature map of likely UXO 
contamination.  Geological survey data indicated that the Pueblo site contained minimal 
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magnetic geological features.  Foliage and other ground surface features that may 
interfere with data acquisition were also minimal at the site.  Such features are expected 
to significantly affect data acquisition and quality at other sites, and therefore will be 
incorporated into feature maps where relevant. 
 
NRL evaluated the current state-of-the-art in data analysis and data fusion algorithms for 
the sensing technologies employed in the ESTCP WAA Pilot Program surveys.  A 
literature review indicated that the current state-of-the-art was generally focused on 
algorithm development for the detection of specific objects, and was therefore more 
suitable for local area applications than for wide-area assessment.  Algorithms for 
orthophotography data emphasized classification of ground cover type through texture 
analyses or pattern recognition.  Though the Pueblo site lacked significant ground cover, 
these algorithms may be applied to orthographic data from other surveyed sites.  For 
LiDAR, algorithms were specific to the applications, which were mostly environmental.  
However, the general approach used for algorithm development proved useful in feature 
analysis.  For magnetometry data, algorithms focused on physical modeling as a method 
of the detection of individual objects and required sensitivities not attainable in helimag 
surveys.  Approaches to data fusion typically applied multivariate analysis to time and/or 
frequency domain EMI data to distinguish individual objects as well.  EMI is a data 
source not yet available for wide-area assessment.  
 
NRL performed feature selection specific to each data source to optimize the extraction 
of information relevant for wide-area assessment.  As part of this effort, NRL also 
developed and implemented pattern recognition algorithms for all selected features in the 
sensor data obtained from the ESTCP WAA Pilot Program surveys.  Methods for feature 
maps suitable for auxiliary information were discussed above.  Craters were the principal 
UXO-related feature of the LiDAR and orthophotography data, and total magnetic 
content for the magnetometry data.  For the LiDAR and orthophotography data, the main 
components of the backgrounds to feature selection were geology, foliage, and man-made 
structures.  For the magnetometry data, geology and man-made structures contributed to 
the background while foliage was not a significant factor.   
 
Of the three survey data sets, the orthographic data were the least informative source for 
the Pueblo PBR #2.  Extraction of craters was not nearly as efficient as with the LiDAR 
data, and the minimal presence of foliage and man-made structures at this site made 
positive identification challenging.  Thus, autonomic pattern recognition yielded features 
with very low signal-to-noise ratios.  Crater extraction from the LiDAR data was 
successful.  An algorithm based on the circular Hough transform was able to extract a 
value of four meters as the characteristic diameter of craters at the Pueblo site.  Further, a 
pattern recognition algorithm based on the morphology of the craters was developed to 
locate them in the LiDAR data.  This information was then converted into a feature map 
describing the density aspect of craters.  Feature maps describing the intensity and quality 
aspects to craters may also provide data fusion algorithms with additional discriminatory 
information.     
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Feature selection was most successful with the magnetometry data.  The total magnetic 
signal approach quickly yielded a feature map that displayed all relevant ferromagnetic 
signals from ordnance-related material and man-made structures present in the data from 
the surveyed area of the Pueblo PBR #2.  Due to the minimal geomagnetic features at the 
Pueblo site, a simple threshold proved effective in eliminating geologic background, 
which is expected to be more significant at other ESTCP WAA Pilot Program sites.  A 
pattern recognition algorithm was developed to separate ordnance-related signal from the 
ferromagnetic background of man-made structures.  This information was then converted 
to a feature map describing the density aspect of ordnance-related material.  Separate 
feature maps describing the intensity and morphology aspects of the ordnance-related and 
man-made components of data are also expected to provide additional discriminatory 
information for data fusion.      
 
NRL developed a multi-resolution algorithm for converting feature maps to probability 
densities, which are required for the proposed Bayesian-based approach to data fusion.  
The multi-resolution algorithm used a computationally-intensive approach similar to that 
of Parzen windows.  A less computationally intensive, but correspondingly less accurate, 
alternative based on two-dimensional histograms of the data was used to generate the 
figures of probability densities shown above.  The generation of probability densities is a 
key enabling component for data fusion work slated for year two. 
 
NRL also explored methods and algorithms for locating feature correlations among the 
various data sources.  Visual inspection of data from the three surveyed sources revealed 
apparent spatial collocation of crater and ferromagnetic features.  To quantify these 
correlations, principal components analysis was applied to the data sets simultaneously.  
The application of PCA resulted in no useful information as the features were too 
obstructed by background.  However, comparison of the crater and magnetometry feature 
maps for the southern portion of the Pueblo site to the combined feature map, all shown 
in Figure 33, indicated that the features were not exactly spatially correlated.  The 
incidence of cratering was most dense in the region between the two peaks of ordnance-
related magnetic signal.  Therefore, algorithms to quantify feature correlations from data 
subsequent to feature extraction will be developed in the second year of the project. 
 
NRL outlined a tiered approach in the proposed data fusion framework for accomplishing 
data fusion, the principle task for year two of the program.  Feature maps and their 
conversion to probability densities suitable for a Bayesian approach to data fusion were 
successfully obtained from the Pueblo PBR #2 survey data.  These are a key enabling 
component for the data fusion framework. 
 
First year efforts for project MM-1510 are summarized in Figure 33.  Features relevant 
for wide area assessment of UXO contamination were successfully obtained from the 
various data sources.  Taken individually, the results for each data source (expert 
information, orthophotography, LiDAR, and magnetometry) did not provide an accurate 
wide-area assessment of the Pueblo site.  When the results were considered in tandem, for 
example, as shown combined feature map of Figure 33, the extracted features provided a 
more accurate wide-area assessment of the Pueblo site.  For example, the crater-like 
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feature density map filled in the gap between the two peaks in the southern portion of the 
magnetometer signal density map.  Thus, the target range known to be present in this area 
was used more extensively than indicated by historical sources.  In addition, the density 
maps and the combined map all confirmed the presence of a second, but less used, target 
range located in the northern portion of the Pueblo site.  No evidence in these maps 
supports the existence of the suspected 75 mm range.  Ground truth dug in all three of 
these regions affirmed these conclusions, as shown in Figure 33.  
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Figure 33  Summary of the first-year efforts of Project MM-1510



 55

Summary 
 
The first year of project MM-1510 successfully demonstrated the feasibility of feature 
extraction from wide-area assessment survey data.  In contrast to the individual data 
sources, feature extraction yielded enhanced data for the Pueblo PBR #2 that was well-
suited for data fusion.  Preliminary combination of feature maps from the various data 
sources yielded a map for the Pueblo site that was more accurate than any one data source 
alone.  Probability densities were generated from the feature maps and make possible the 
combination of estimates of data quality, UXO-related features, non-UXO backgrounds, 
and correlations among the data sets in a Bayesian-based approach to data fusion.    
 
The feature extraction algorithms and the tiered approach to data fusion developed in the 
first year will enable a data fusion framework for wide area assessment to be an effective 
tool for UXO remediation of other sites.  Although tailored to the specific data sources, 
the algorithms developed are general in nature and not overly site dependent.  Large 
variations in the backgrounds for extracted features are expected for different remediation 
sites.  However, these variations will most affect the signal-to-noise ratios in the maps for 
extracted features.  The strength of a data fusion approach is that it provides resilience to 
such variations by maximizing the information obtained from the different data sources 
and minimizing exposure to false positives and background variations. The methods will 
provide a means to develop additional feature maps to quantify specific background 
features.  Thus, the feature extraction algorithms and tiered approach to data fusion will 
be applicable to data sets from other survey sites.  In summary, the results from the first 
year of project MM-1510 have only strengthened the case for the effectiveness of a data 
fusion approach for wide-area assessment.
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